trying example from keras wiki

This commit is contained in:
leca 2025-05-10 18:09:59 +03:00
parent 1063b60a98
commit d231ec9e57
2 changed files with 572 additions and 143 deletions

553
main.py
View File

@ -1,158 +1,429 @@
from os import environ, makedirs, path, walk, listdir
from shutil import move
from dotenv import load_dotenv
from base64 import b64decode
import re
import requests
import cv2
import keras
"""
Title: OCR model for reading Captchas
Author: [A_K_Nain](https://twitter.com/A_K_Nain)
Date created: 2020/06/14
Last modified: 2024/03/13
Description: How to implement an OCR model using CNNs, RNNs and CTC loss.
Accelerator: GPU
Converted to Keras 3 by: [Sitam Meur](https://github.com/sitamgithub-MSIT)
"""
"""
## Introduction
This example demonstrates a simple OCR model built with the Functional API. Apart from
combining CNN and RNN, it also illustrates how you can instantiate a new layer
and use it as an "Endpoint layer" for implementing CTC loss. For a detailed
guide to layer subclassing, please check out
[this page](https://keras.io/guides/making_new_layers_and_models_via_subclassing/)
in the developer guides.
"""
"""
## Setup
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import numpy as np
from keras.callbacks import EarlyStopping, ModelCheckpoint
import matplotlib.pyplot as plt
load_dotenv()
from pathlib import Path
# Constants
IMAGE_HEIGHT = 70
IMAGE_WIDTH = 200
DOWNLOAD_PATH = environ.get("DOWNLOAD_PATH")
TESTING_PATH = environ.get("TESTING_PATH")
TRAINING_PATH = environ.get("TRAINING_PATH")
PERCENT_OF_TESTING = int(environ.get("PERCENT_OF_TESTING"))
import tensorflow as tf
import keras
from keras import ops
from keras import layers
def prepare_dirs():
"""Create necessary directories for downloading and storing images."""
makedirs(DOWNLOAD_PATH, exist_ok=True)
makedirs(TESTING_PATH, exist_ok=True)
makedirs(TRAINING_PATH, exist_ok=True)
def fetch_captcha(id):
"""Fetch a captcha image by its ID and save it to the download path."""
try:
response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/{id}")
response.raise_for_status()
captcha = response.json()["captcha"]
captcha_file_path = path.join(DOWNLOAD_PATH, f"{captcha['hash']}_{captcha['solution']}.jpeg")
with open(captcha_file_path, 'wb') as captcha_file:
captcha_file.write(b64decode(captcha['image']))
except requests.RequestException as e:
print(f"Error fetching captcha {id}: {e}")
def search_saved_captcha(hash, path):
"""Check if a captcha with the given hash exists in the specified path."""
regex = re.compile(f"{hash}_\\w{{6}}\\.jpeg")
for _, _, files in walk(path):
for file in files:
if regex.match(file):
return True
return False
def search_and_download_new(captchas):
"""Search for new captchas and download them if they don't already exist."""
for captcha in captchas:
id = captcha["id"]
hash = captcha["hash"]
if not (search_saved_captcha(hash, TRAINING_PATH) or
search_saved_captcha(hash, TESTING_PATH) or
search_saved_captcha(hash, DOWNLOAD_PATH)):
fetch_captcha(id)
def sort_datasets():
"""Sort downloaded captchas into training and testing datasets."""
amount_of_new_data = len([file for file in listdir(DOWNLOAD_PATH) if path.isfile(path.join(DOWNLOAD_PATH, file))])
amount_to_send_to_test = round(amount_of_new_data * (PERCENT_OF_TESTING / 100))
files = listdir(DOWNLOAD_PATH)
for index, file in enumerate(files):
if index < amount_to_send_to_test:
move(path.join(DOWNLOAD_PATH, file), TESTING_PATH)
else:
move(path.join(DOWNLOAD_PATH, file), TRAINING_PATH)
def download_dataset():
"""Download the dataset of captchas and sort them into training and testing sets."""
prepare_dirs()
try:
response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/all")
response.raise_for_status()
captchas = response.json()["captchas"]
search_and_download_new(captchas)
sort_datasets()
except requests.RequestException as e:
print(f"Error downloading dataset: {e}")
def load_dataset(dataset_path):
"""Load images and their corresponding solutions from the specified dataset path."""
images = []
solutions = []
for filename in listdir(dataset_path):
img = cv2.imread(path.join(dataset_path, filename))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img / 255.0
images.append(img)
solution = path.splitext(filename)[0].split('_')[1]
solutions.append(solution)
unique_solutions = sorted(set(solutions))
solution_to_label = {solution: i for i, solution in enumerate(unique_solutions)}
labels = [solution_to_label[solution] for solution in solutions]
return np.array(images), np.array(labels), unique_solutions
def load_training_dataset():
"""Load the training dataset."""
return load_dataset(TRAINING_PATH)
def load_testing_dataset():
"""Load the testing dataset."""
return load_dataset(TESTING_PATH)
"""
## Load the data: [Captcha Images](https://www.kaggle.com/fournierp/captcha-version-2-images)
Let's download the data.
"""
def train_nn():
"""Train the neural network on the training dataset."""
training_images, training_labels, unique_solutions = load_training_dataset()
testing_images, testing_labels = (None, None)
"""shell
curl -LO https://github.com/AakashKumarNain/CaptchaCracker/raw/master/captcha_images_v2.zip
unzip -qq captcha_images_v2.zip
"""
if PERCENT_OF_TESTING > 0:
testing_images, testing_labels, _ = load_testing_dataset()
model = keras.Sequential([
keras.layers.Conv2D(128, (3, 3), activation='relu', input_shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 1)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(256, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(256, (3, 3), activation='relu'),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.5), # Dropout for regularization
keras.layers.Dense(len(unique_solutions), activation='softmax') # Output layer
])
"""
The dataset contains 1040 captcha files as `jpeg` images. The label for each sample is a string,
the name of the file (minus the file extension).
We will map each character in the string to an integer for training the model. Similary,
we will need to map the predictions of the model back to strings. For this purpose
we will maintain two dictionaries, mapping characters to integers, and integers to characters,
respectively.
"""
model.summary()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
callbacks = [
EarlyStopping(monitor='accuracy', patience=3),
ModelCheckpoint('best_model.keras', save_best_only=True)
]
# Path to the data directory
data_dir = Path("./datasets/training")
EPOCHS = 100
BATCH_SIZE = 8
# Get list of all the images
images = sorted(list(map(str, list(data_dir.glob("*.jpeg")))))
labels = [img.split(os.path.sep)[-1].split(".jpeg")[0].split("_")[1].upper() for img in images]
characters = set(char for label in labels for char in label)
characters = sorted(list(characters))
if PERCENT_OF_TESTING > 0:
model.fit(np.array(training_images), np.array(training_labels),
epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks,
validation_data=(np.array(testing_images), np.array(testing_labels)),
)
print("Number of images found: ", len(images))
print("Number of labels found: ", len(labels))
print("Number of unique characters: ", len(characters))
print("Characters present: ", characters)
# Batch size for training and validation
batch_size = 16
# Desired image dimensions
img_width = 200
img_height = 70
# Factor by which the image is going to be downsampled
# by the convolutional blocks. We will be using two
# convolution blocks and each block will have
# a pooling layer which downsample the features by a factor of 2.
# Hence total downsampling factor would be 4.
downsample_factor = 4
# Maximum length of any captcha in the dataset
# print([len(label) for label in labels])
max_length = max([len(label) for label in labels])
"""
## Preprocessing
"""
# Mapping characters to integers
char_to_num = layers.StringLookup(vocabulary=list(characters), mask_token=None)
# Mapping integers back to original characters
num_to_char = layers.StringLookup(
vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True
)
def split_data(images, labels, train_size=0.9, shuffle=True):
# 1. Get the total size of the dataset
size = len(images)
# 2. Make an indices array and shuffle it, if required
indices = ops.arange(size)
if shuffle:
indices = keras.random.shuffle(indices)
# 3. Get the size of training samples
train_samples = int(size * train_size)
# 4. Split data into training and validation sets
x_train, y_train = images[indices[:train_samples]], labels[indices[:train_samples]]
x_valid, y_valid = images[indices[train_samples:]], labels[indices[train_samples:]]
return x_train, x_valid, y_train, y_valid
# Splitting data into training and validation sets
x_train, x_valid, y_train, y_valid = split_data(np.array(images), np.array(labels))
def encode_single_sample(img_path, label):
# 1. Read image
img = tf.io.read_file(img_path)
# 2. Decode and convert to grayscale
img = tf.io.decode_jpeg(img, channels=1)
# 3. Convert to float32 in [0, 1] range
img = tf.image.convert_image_dtype(img, tf.float32)
# 4. Resize to the desired size
img = ops.image.resize(img, [img_height, img_width])
# 5. Transpose the image because we want the time
# dimension to correspond to the width of the image.
img = ops.transpose(img, axes=[1, 0, 2])
# 6. Map the characters in label to numbers
label = char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8"))
# 7. Return a dict as our model is expecting two inputs
return {"image": img, "label": label}
"""
## Create `Dataset` objects
"""
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = (
train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
.batch(batch_size)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
validation_dataset = tf.data.Dataset.from_tensor_slices((x_valid, y_valid))
validation_dataset = (
validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
.batch(batch_size)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
"""
## Visualize the data
"""
_, ax = plt.subplots(4, 4, figsize=(10, 5))
for batch in train_dataset.take(1):
images = batch["image"]
labels = batch["label"]
for i in range(16):
img = (images[i] * 255).numpy().astype("uint8")
label = tf.strings.reduce_join(num_to_char(labels[i])).numpy().decode("utf-8")
ax[i // 4, i % 4].imshow(img[:, :, 0].T, cmap="gray")
ax[i // 4, i % 4].set_title(label)
ax[i // 4, i % 4].axis("off")
plt.show()
"""
## Model
"""
def ctc_batch_cost(y_true, y_pred, input_length, label_length):
label_length = ops.cast(ops.squeeze(label_length, axis=-1), dtype="int32")
input_length = ops.cast(ops.squeeze(input_length, axis=-1), dtype="int32")
sparse_labels = ops.cast(
ctc_label_dense_to_sparse(y_true, label_length), dtype="int32"
)
y_pred = ops.log(ops.transpose(y_pred, axes=[1, 0, 2]) + keras.backend.epsilon())
return ops.expand_dims(
tf.compat.v1.nn.ctc_loss(
inputs=y_pred, labels=sparse_labels, sequence_length=input_length
),
1,
)
def ctc_label_dense_to_sparse(labels, label_lengths):
label_shape = ops.shape(labels)
num_batches_tns = ops.stack([label_shape[0]])
max_num_labels_tns = ops.stack([label_shape[1]])
def range_less_than(old_input, current_input):
return ops.expand_dims(ops.arange(ops.shape(old_input)[1]), 0) < tf.fill(
max_num_labels_tns, current_input
)
init = ops.cast(tf.fill([1, label_shape[1]], 0), dtype="bool")
dense_mask = tf.compat.v1.scan(
range_less_than, label_lengths, initializer=init, parallel_iterations=1
)
dense_mask = dense_mask[:, 0, :]
label_array = ops.reshape(
ops.tile(ops.arange(0, label_shape[1]), num_batches_tns), label_shape
)
label_ind = tf.compat.v1.boolean_mask(label_array, dense_mask)
batch_array = ops.transpose(
ops.reshape(
ops.tile(ops.arange(0, label_shape[0]), max_num_labels_tns),
tf.reverse(label_shape, [0]),
)
)
batch_ind = tf.compat.v1.boolean_mask(batch_array, dense_mask)
indices = ops.transpose(
ops.reshape(ops.concatenate([batch_ind, label_ind], axis=0), [2, -1])
)
vals_sparse = tf.compat.v1.gather_nd(labels, indices)
return tf.SparseTensor(
ops.cast(indices, dtype="int64"),
vals_sparse,
ops.cast(label_shape, dtype="int64"),
)
class CTCLayer(layers.Layer):
def __init__(self, name=None):
super().__init__(name=name)
self.loss_fn = ctc_batch_cost
def call(self, y_true, y_pred):
# Compute the training-time loss value and add it
# to the layer using `self.add_loss()`.
batch_len = ops.cast(ops.shape(y_true)[0], dtype="int64")
input_length = ops.cast(ops.shape(y_pred)[1], dtype="int64")
label_length = ops.cast(ops.shape(y_true)[1], dtype="int64")
input_length = input_length * ops.ones(shape=(batch_len, 1), dtype="int64")
label_length = label_length * ops.ones(shape=(batch_len, 1), dtype="int64")
loss = self.loss_fn(y_true, y_pred, input_length, label_length)
self.add_loss(loss)
# At test time, just return the computed predictions
return y_pred
def build_model():
# Inputs to the model
input_img = layers.Input(
shape=(img_width, img_height, 1), name="image", dtype="float32"
)
labels = layers.Input(name="label", shape=(None,), dtype="float32")
# First conv block
x = layers.Conv2D(
32,
(3, 3),
activation="relu",
kernel_initializer="he_normal",
padding="same",
name="Conv1",
)(input_img)
x = layers.MaxPooling2D((2, 2), name="pool1")(x)
# Second conv block
x = layers.Conv2D(
64,
(3, 3),
activation="relu",
kernel_initializer="he_normal",
padding="same",
name="Conv2",
)(x)
x = layers.MaxPooling2D((2, 2), name="pool2")(x)
# We have used two max pool with pool size and strides 2.
# Hence, downsampled feature maps are 4x smaller. The number of
# filters in the last layer is 64. Reshape accordingly before
# passing the output to the RNN part of the model
new_shape = ((img_width // 4), (img_height // 4) * 64)
x = layers.Reshape(target_shape=new_shape, name="reshape")(x)
x = layers.Dense(64, activation="relu", name="dense1")(x)
x = layers.Dropout(0.2)(x)
# RNNs
x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.25))(x)
x = layers.Bidirectional(layers.LSTM(64, return_sequences=True, dropout=0.25))(x)
# Output layer
x = layers.Dense(
len(char_to_num.get_vocabulary()) + 1, activation="softmax", name="dense2"
)(x)
# Add CTC layer for calculating CTC loss at each step
output = CTCLayer(name="ctc_loss")(labels, x)
# Define the model
model = keras.models.Model(
inputs=[input_img, labels], outputs=output, name="ocr_model_v1"
)
# Optimizer
opt = keras.optimizers.Adam()
# Compile the model and return
model.compile(optimizer=opt)
return model
# Get the model
model = build_model()
model.summary()
"""
## Training
"""
# TODO restore epoch count.
epochs = 100
early_stopping_patience = 10
# Add early stopping
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=early_stopping_patience, restore_best_weights=True
)
# Train the model
history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=epochs,
callbacks=[early_stopping],
)
"""
## Inference
You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/ocr-for-captcha)
and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/ocr-for-captcha).
"""
def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1):
input_shape = ops.shape(y_pred)
num_samples, num_steps = input_shape[0], input_shape[1]
y_pred = ops.log(ops.transpose(y_pred, axes=[1, 0, 2]) + keras.backend.epsilon())
input_length = ops.cast(input_length, dtype="int32")
if greedy:
(decoded, log_prob) = tf.nn.ctc_greedy_decoder(
inputs=y_pred, sequence_length=input_length
)
else:
model.fit(np.array(training_images), np.array(training_labels),
epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks
)
keras.saving.save_model(model, 'captcha_solver.keras')
(decoded, log_prob) = tf.compat.v1.nn.ctc_beam_search_decoder(
inputs=y_pred,
sequence_length=input_length,
beam_width=beam_width,
top_paths=top_paths,
)
decoded_dense = []
for st in decoded:
st = tf.SparseTensor(st.indices, st.values, (num_samples, num_steps))
decoded_dense.append(tf.sparse.to_dense(sp_input=st, default_value=-1))
return (decoded_dense, log_prob)
if __name__ == "__main__":
download_dataset()
train_nn()
# Get the prediction model by extracting layers till the output layer
prediction_model = keras.models.Model(
model.input[0], model.get_layer(name="dense2").output
)
prediction_model.summary()
# A utility function to decode the output of the network
def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Use greedy search. For complex tasks, you can use beam search
results = ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
:, :max_length
]
# Iterate over the results and get back the text
output_text = []
for res in results:
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
output_text.append(res)
return output_text
# Let's check results on some validation samples
for batch in validation_dataset.take(1):
batch_images = batch["image"]
batch_labels = batch["label"]
preds = prediction_model.predict(batch_images)
pred_texts = decode_batch_predictions(preds)
orig_texts = []
for label in batch_labels:
label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8")
orig_texts.append(label)
_, ax = plt.subplots(4, 4, figsize=(15, 5))
for i in range(len(pred_texts)):
img = (batch_images[i, :, :, 0] * 255).numpy().astype(np.uint8)
img = img.T
title = f"Prediction: {pred_texts[i]}"
ax[i // 4, i % 4].imshow(img, cmap="gray")
ax[i // 4, i % 4].set_title(title)
ax[i // 4, i % 4].axis("off")
plt.show()

158
main.py.old Normal file
View File

@ -0,0 +1,158 @@
from os import environ, makedirs, path, walk, listdir
from shutil import move
from dotenv import load_dotenv
from base64 import b64decode
import re
import requests
import cv2
import keras
import numpy as np
from keras.callbacks import EarlyStopping, ModelCheckpoint
load_dotenv()
# Constants
IMAGE_HEIGHT = 70
IMAGE_WIDTH = 200
DOWNLOAD_PATH = environ.get("DOWNLOAD_PATH")
TESTING_PATH = environ.get("TESTING_PATH")
TRAINING_PATH = environ.get("TRAINING_PATH")
PERCENT_OF_TESTING = int(environ.get("PERCENT_OF_TESTING"))
def prepare_dirs():
"""Create necessary directories for downloading and storing images."""
makedirs(DOWNLOAD_PATH, exist_ok=True)
makedirs(TESTING_PATH, exist_ok=True)
makedirs(TRAINING_PATH, exist_ok=True)
def fetch_captcha(id):
"""Fetch a captcha image by its ID and save it to the download path."""
try:
response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/{id}")
response.raise_for_status()
captcha = response.json()["captcha"]
captcha_file_path = path.join(DOWNLOAD_PATH, f"{captcha['hash']}_{captcha['solution']}.jpeg")
with open(captcha_file_path, 'wb') as captcha_file:
captcha_file.write(b64decode(captcha['image']))
except requests.RequestException as e:
print(f"Error fetching captcha {id}: {e}")
def search_saved_captcha(hash, path):
"""Check if a captcha with the given hash exists in the specified path."""
regex = re.compile(f"{hash}_\\w{{6}}\\.jpeg")
for _, _, files in walk(path):
for file in files:
if regex.match(file):
return True
return False
def search_and_download_new(captchas):
"""Search for new captchas and download them if they don't already exist."""
for captcha in captchas:
id = captcha["id"]
hash = captcha["hash"]
if not (search_saved_captcha(hash, TRAINING_PATH) or
search_saved_captcha(hash, TESTING_PATH) or
search_saved_captcha(hash, DOWNLOAD_PATH)):
fetch_captcha(id)
def sort_datasets():
"""Sort downloaded captchas into training and testing datasets."""
amount_of_new_data = len([file for file in listdir(DOWNLOAD_PATH) if path.isfile(path.join(DOWNLOAD_PATH, file))])
amount_to_send_to_test = round(amount_of_new_data * (PERCENT_OF_TESTING / 100))
files = listdir(DOWNLOAD_PATH)
for index, file in enumerate(files):
if index < amount_to_send_to_test:
move(path.join(DOWNLOAD_PATH, file), TESTING_PATH)
else:
move(path.join(DOWNLOAD_PATH, file), TRAINING_PATH)
def download_dataset():
"""Download the dataset of captchas and sort them into training and testing sets."""
prepare_dirs()
try:
response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/all")
response.raise_for_status()
captchas = response.json()["captchas"]
search_and_download_new(captchas)
sort_datasets()
except requests.RequestException as e:
print(f"Error downloading dataset: {e}")
def load_dataset(dataset_path):
"""Load images and their corresponding solutions from the specified dataset path."""
images = []
solutions = []
for filename in listdir(dataset_path):
img = cv2.imread(path.join(dataset_path, filename))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img / 255.0
images.append(img)
solution = path.splitext(filename)[0].split('_')[1]
solutions.append(solution)
unique_solutions = sorted(set(solutions))
solution_to_label = {solution: i for i, solution in enumerate(unique_solutions)}
labels = [solution_to_label[solution] for solution in solutions]
return np.array(images), np.array(labels), unique_solutions
def load_training_dataset():
"""Load the training dataset."""
return load_dataset(TRAINING_PATH)
def load_testing_dataset():
"""Load the testing dataset."""
return load_dataset(TESTING_PATH)
def train_nn():
"""Train the neural network on the training dataset."""
training_images, training_labels, unique_solutions = load_training_dataset()
testing_images, testing_labels = (None, None)
if PERCENT_OF_TESTING > 0:
testing_images, testing_labels, _ = load_testing_dataset()
model = keras.Sequential([
keras.layers.Conv2D(128, (3, 3), activation='relu', input_shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 1)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(256, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(256, (3, 3), activation='relu'),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.5), # Dropout for regularization
keras.layers.Dense(len(unique_solutions), activation='softmax') # Output layer
])
model.summary()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
callbacks = [
EarlyStopping(monitor='accuracy', patience=3),
ModelCheckpoint('best_model.keras', save_best_only=True)
]
EPOCHS = 100
BATCH_SIZE = 8
if PERCENT_OF_TESTING > 0:
model.fit(np.array(training_images), np.array(training_labels),
epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks,
validation_data=(np.array(testing_images), np.array(testing_labels)),
)
else:
model.fit(np.array(training_images), np.array(training_labels),
epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks
)
keras.saving.save_model(model, 'captcha_solver.keras')
if __name__ == "__main__":
download_dataset()
train_nn()