159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
from os import environ, makedirs, path, walk, listdir
|
|
from shutil import move
|
|
from dotenv import load_dotenv
|
|
from base64 import b64decode
|
|
import re
|
|
import requests
|
|
import cv2
|
|
import keras
|
|
import numpy as np
|
|
from keras.callbacks import EarlyStopping, ModelCheckpoint
|
|
|
|
load_dotenv()
|
|
|
|
# Constants
|
|
IMAGE_HEIGHT = 70
|
|
IMAGE_WIDTH = 200
|
|
DOWNLOAD_PATH = environ.get("DOWNLOAD_PATH")
|
|
TESTING_PATH = environ.get("TESTING_PATH")
|
|
TRAINING_PATH = environ.get("TRAINING_PATH")
|
|
PERCENT_OF_TESTING = int(environ.get("PERCENT_OF_TESTING"))
|
|
|
|
def prepare_dirs():
|
|
"""Create necessary directories for downloading and storing images."""
|
|
makedirs(DOWNLOAD_PATH, exist_ok=True)
|
|
makedirs(TESTING_PATH, exist_ok=True)
|
|
makedirs(TRAINING_PATH, exist_ok=True)
|
|
|
|
def fetch_captcha(id):
|
|
"""Fetch a captcha image by its ID and save it to the download path."""
|
|
try:
|
|
response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/{id}")
|
|
response.raise_for_status()
|
|
captcha = response.json()["captcha"]
|
|
captcha_file_path = path.join(DOWNLOAD_PATH, f"{captcha['hash']}_{captcha['solution']}.jpeg")
|
|
with open(captcha_file_path, 'wb') as captcha_file:
|
|
captcha_file.write(b64decode(captcha['image']))
|
|
except requests.RequestException as e:
|
|
print(f"Error fetching captcha {id}: {e}")
|
|
|
|
def search_saved_captcha(hash, path):
|
|
"""Check if a captcha with the given hash exists in the specified path."""
|
|
regex = re.compile(f"{hash}_\\w{{6}}\\.jpeg")
|
|
for _, _, files in walk(path):
|
|
for file in files:
|
|
if regex.match(file):
|
|
return True
|
|
return False
|
|
|
|
def search_and_download_new(captchas):
|
|
"""Search for new captchas and download them if they don't already exist."""
|
|
for captcha in captchas:
|
|
id = captcha["id"]
|
|
hash = captcha["hash"]
|
|
if not (search_saved_captcha(hash, TRAINING_PATH) or
|
|
search_saved_captcha(hash, TESTING_PATH) or
|
|
search_saved_captcha(hash, DOWNLOAD_PATH)):
|
|
fetch_captcha(id)
|
|
|
|
def sort_datasets():
|
|
"""Sort downloaded captchas into training and testing datasets."""
|
|
amount_of_new_data = len([file for file in listdir(DOWNLOAD_PATH) if path.isfile(path.join(DOWNLOAD_PATH, file))])
|
|
amount_to_send_to_test = round(amount_of_new_data * (PERCENT_OF_TESTING / 100))
|
|
|
|
files = listdir(DOWNLOAD_PATH)
|
|
for index, file in enumerate(files):
|
|
if index < amount_to_send_to_test:
|
|
move(path.join(DOWNLOAD_PATH, file), TESTING_PATH)
|
|
else:
|
|
move(path.join(DOWNLOAD_PATH, file), TRAINING_PATH)
|
|
|
|
def download_dataset():
|
|
"""Download the dataset of captchas and sort them into training and testing sets."""
|
|
prepare_dirs()
|
|
try:
|
|
response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/all")
|
|
response.raise_for_status()
|
|
captchas = response.json()["captchas"]
|
|
search_and_download_new(captchas)
|
|
sort_datasets()
|
|
except requests.RequestException as e:
|
|
print(f"Error downloading dataset: {e}")
|
|
|
|
def load_dataset(dataset_path):
|
|
"""Load images and their corresponding solutions from the specified dataset path."""
|
|
images = []
|
|
solutions = []
|
|
for filename in listdir(dataset_path):
|
|
img = cv2.imread(path.join(dataset_path, filename))
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
img = img / 255.0
|
|
images.append(img)
|
|
solution = path.splitext(filename)[0].split('_')[1]
|
|
solutions.append(solution)
|
|
|
|
unique_solutions = sorted(set(solutions))
|
|
solution_to_label = {solution: i for i, solution in enumerate(unique_solutions)}
|
|
labels = [solution_to_label[solution] for solution in solutions]
|
|
|
|
return np.array(images), np.array(labels), unique_solutions
|
|
|
|
def load_training_dataset():
|
|
"""Load the training dataset."""
|
|
return load_dataset(TRAINING_PATH)
|
|
|
|
def load_testing_dataset():
|
|
"""Load the testing dataset."""
|
|
return load_dataset(TESTING_PATH)
|
|
|
|
|
|
def train_nn():
|
|
"""Train the neural network on the training dataset."""
|
|
training_images, training_labels, unique_solutions = load_training_dataset()
|
|
testing_images, testing_labels = (None, None)
|
|
|
|
if PERCENT_OF_TESTING > 0:
|
|
testing_images, testing_labels, _ = load_testing_dataset()
|
|
|
|
model = keras.Sequential([
|
|
keras.layers.Conv2D(128, (3, 3), activation='relu', input_shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 1)),
|
|
keras.layers.MaxPooling2D((2, 2)),
|
|
keras.layers.Conv2D(256, (3, 3), activation='relu'),
|
|
keras.layers.MaxPooling2D((2, 2)),
|
|
keras.layers.Conv2D(256, (3, 3), activation='relu'),
|
|
keras.layers.Flatten(),
|
|
keras.layers.Dense(128, activation='relu'),
|
|
keras.layers.Dropout(0.5), # Dropout for regularization
|
|
keras.layers.Dense(len(unique_solutions), activation='softmax') # Output layer
|
|
])
|
|
|
|
model.summary()
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
|
|
|
callbacks = [
|
|
EarlyStopping(monitor='accuracy', patience=3),
|
|
ModelCheckpoint('best_model.keras', save_best_only=True)
|
|
]
|
|
|
|
EPOCHS = 100
|
|
BATCH_SIZE = 8
|
|
|
|
if PERCENT_OF_TESTING > 0:
|
|
model.fit(np.array(training_images), np.array(training_labels),
|
|
epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks,
|
|
validation_data=(np.array(testing_images), np.array(testing_labels)),
|
|
)
|
|
else:
|
|
model.fit(np.array(training_images), np.array(training_labels),
|
|
epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks
|
|
)
|
|
|
|
keras.saving.save_model(model, 'captcha_solver.keras')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
download_dataset()
|
|
train_nn()
|
|
|
|
|