from os import environ, makedirs, path, walk, listdir from shutil import move from dotenv import load_dotenv from base64 import b64decode import re import requests import cv2 import keras import numpy as np from keras.callbacks import EarlyStopping, ModelCheckpoint load_dotenv() # Constants IMAGE_HEIGHT = 70 IMAGE_WIDTH = 200 DOWNLOAD_PATH = environ.get("DOWNLOAD_PATH") TESTING_PATH = environ.get("TESTING_PATH") TRAINING_PATH = environ.get("TRAINING_PATH") PERCENT_OF_TESTING = int(environ.get("PERCENT_OF_TESTING")) def prepare_dirs(): """Create necessary directories for downloading and storing images.""" makedirs(DOWNLOAD_PATH, exist_ok=True) makedirs(TESTING_PATH, exist_ok=True) makedirs(TRAINING_PATH, exist_ok=True) def fetch_captcha(id): """Fetch a captcha image by its ID and save it to the download path.""" try: response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/{id}") response.raise_for_status() captcha = response.json()["captcha"] captcha_file_path = path.join(DOWNLOAD_PATH, f"{captcha['hash']}_{captcha['solution']}.jpeg") with open(captcha_file_path, 'wb') as captcha_file: captcha_file.write(b64decode(captcha['image'])) except requests.RequestException as e: print(f"Error fetching captcha {id}: {e}") def search_saved_captcha(hash, path): """Check if a captcha with the given hash exists in the specified path.""" regex = re.compile(f"{hash}_\\w{{6}}\\.jpeg") for _, _, files in walk(path): for file in files: if regex.match(file): return True return False def search_and_download_new(captchas): """Search for new captchas and download them if they don't already exist.""" for captcha in captchas: id = captcha["id"] hash = captcha["hash"] if not (search_saved_captcha(hash, TRAINING_PATH) or search_saved_captcha(hash, TESTING_PATH) or search_saved_captcha(hash, DOWNLOAD_PATH)): fetch_captcha(id) def sort_datasets(): """Sort downloaded captchas into training and testing datasets.""" amount_of_new_data = len([file for file in listdir(DOWNLOAD_PATH) if path.isfile(path.join(DOWNLOAD_PATH, file))]) amount_to_send_to_test = round(amount_of_new_data * (PERCENT_OF_TESTING / 100)) files = listdir(DOWNLOAD_PATH) for index, file in enumerate(files): if index < amount_to_send_to_test: move(path.join(DOWNLOAD_PATH, file), TESTING_PATH) else: move(path.join(DOWNLOAD_PATH, file), TRAINING_PATH) def download_dataset(): """Download the dataset of captchas and sort them into training and testing sets.""" prepare_dirs() try: response = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/all") response.raise_for_status() captchas = response.json()["captchas"] search_and_download_new(captchas) sort_datasets() except requests.RequestException as e: print(f"Error downloading dataset: {e}") def load_dataset(dataset_path): """Load images and their corresponding solutions from the specified dataset path.""" images = [] solutions = [] for filename in listdir(dataset_path): img = cv2.imread(path.join(dataset_path, filename)) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = img / 255.0 images.append(img) solution = path.splitext(filename)[0].split('_')[1] solutions.append(solution) unique_solutions = sorted(set(solutions)) solution_to_label = {solution: i for i, solution in enumerate(unique_solutions)} labels = [solution_to_label[solution] for solution in solutions] return np.array(images), np.array(labels), unique_solutions def load_training_dataset(): """Load the training dataset.""" return load_dataset(TRAINING_PATH) def load_testing_dataset(): """Load the testing dataset.""" return load_dataset(TESTING_PATH) def train_nn(): """Train the neural network on the training dataset.""" training_images, training_labels, unique_solutions = load_training_dataset() testing_images, testing_labels = (None, None) if PERCENT_OF_TESTING > 0: testing_images, testing_labels, _ = load_testing_dataset() model = keras.Sequential([ keras.layers.Conv2D(128, (3, 3), activation='relu', input_shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 1)), keras.layers.MaxPooling2D((2, 2)), keras.layers.Conv2D(256, (3, 3), activation='relu'), keras.layers.MaxPooling2D((2, 2)), keras.layers.Conv2D(256, (3, 3), activation='relu'), keras.layers.Flatten(), keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.5), # Dropout for regularization keras.layers.Dense(len(unique_solutions), activation='softmax') # Output layer ]) model.summary() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) callbacks = [ EarlyStopping(monitor='accuracy', patience=3), ModelCheckpoint('best_model.keras', save_best_only=True) ] EPOCHS = 100 BATCH_SIZE = 8 if PERCENT_OF_TESTING > 0: model.fit(np.array(training_images), np.array(training_labels), epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks, validation_data=(np.array(testing_images), np.array(testing_labels)), ) else: model.fit(np.array(training_images), np.array(training_labels), epochs=EPOCHS, batch_size=BATCH_SIZE, callbacks=callbacks ) keras.saving.save_model(model, 'captcha_solver.keras') if __name__ == "__main__": download_dataset() train_nn()