added training

This commit is contained in:
leca 2025-05-04 15:48:53 +03:00
parent d1be49d740
commit 9f153eae91
2 changed files with 86 additions and 7 deletions

61
main.py
View File

@ -4,6 +4,10 @@ from dotenv import load_dotenv
from base64 import b64decode
import re
import requests
import tf2onnx
import cv2
import keras
import numpy as np
load_dotenv()
@ -17,14 +21,14 @@ def prepare_dirs():
makedirs(TRAINING_PATH, exist_ok=True)
def fetch_captcha(id):
print(f"Fetching captcha with id {id}")
# print(f"Fetching captcha with id {id}")
captcha = requests.get(f"{environ.get('CAPTCHA_AGGREGATOR_API')}/captcha/{id}").json()["captcha"]
with open(f"{DOWNLOAD_PATH}/{captcha['hash']}_{captcha['solution']}.jpeg", 'wb') as captcha_file:
captcha_file.write(b64decode(captcha['image']))
def search_saved_captcha(hash, path):
print(f"searching captcha with hash {hash} in {path}")
# print(f"searching captcha with hash {hash} in {path}")
regex = re.compile(hash + '_\\w{6}\\.jpeg')
for _, _, files in walk(path):
@ -34,7 +38,7 @@ def search_saved_captcha(hash, path):
return False
def search_and_download_new(captchas):
print(f"Searching and downloading new captchas")
# print(f"Searching and downloading new captchas")
for captcha in captchas:
id = captcha["id"]
hash = captcha["hash"]
@ -45,12 +49,10 @@ def search_and_download_new(captchas):
fetch_captcha(id)
def sort_datasets():
print(f"Sorting datasets")
# print(f"Sorting datasets")
percent_of_testing = int(environ.get("PERCENT_OF_TESTING"))
amount_of_new_data = len([file for file in listdir(DOWNLOAD_PATH) if path.isfile(f'{DOWNLOAD_PATH}/{file}')])
print(amount_of_new_data)
amount_to_send_to_test = round(amount_of_new_data * (percent_of_testing / 100))
print(amount_to_send_to_test)
for _, _, files in walk(DOWNLOAD_PATH):
for index, file in enumerate(files):
if index < amount_to_send_to_test:
@ -66,10 +68,55 @@ def download_dataset():
search_and_download_new(captchas)
sort_datasets()
def load_dataset(dataset_path):
images = []
solutions = []
for filename in listdir(dataset_path):
img = cv2.imread(f"{dataset_path}/{filename}")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img / 255.0
images.append(img)
solution = path.splitext(filename)[0].split('_')[1]
solutions.append(solution)
unique_solutions = sorted(set(solutions))
solution_to_label = {solution: i for i, solution in enumerate(unique_solutions)}
labels = [solution_to_label[solution] for solution in solutions]
return images, labels, unique_solutions
def load_training_dataset():
return load_dataset(TRAINING_PATH)
def load_testing_dataset():
return load_dataset(TESTING_PATH)
def train_nn():
pass
training_images, training_labels, unique_solutions = load_training_dataset()
if int(environ.get("PERCENT_OF_TESTING")) > 0:
testing_images, testing_labels, _ = load_testing_dataset()
model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(70, 200, 1)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.Flatten(),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(len(unique_solutions), activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
if int(environ.get("PERCENT_OF_TESTING")) > 0:
model.fit(np.array(training_images), np.array(training_labels), epochs=10, batch_size=128, validation_data=(np.array(testing_images), np.array(testing_labels)))
else:
model.fit(np.array(training_images), np.array(training_labels), epochs=10, batch_size=128)
keras.saving.save_model(model, 'captcha_solver.keras')
# model.save('model.h5')
# tf2onnx.convert.from_keras(model, opset=13, output_path='model_onnx')
if __name__ == "__main__":
download_dataset()

View File

@ -1,7 +1,39 @@
absl-py==2.2.2
astunparse==1.6.3
certifi==2025.4.26
charset-normalizer==3.4.2
dotenv==0.9.9
flatbuffers==25.2.10
gast==0.6.0
google-pasta==0.2.0
grpcio==1.71.0
h5py==3.13.0
idna==3.10
keras==3.9.2
libclang==18.1.1
Markdown==3.8
markdown-it-py==3.0.0
MarkupSafe==3.0.2
mdurl==0.1.2
ml_dtypes==0.5.1
namex==0.0.9
numpy==2.1.3
opt_einsum==3.4.0
optree==0.15.0
packaging==25.0
protobuf==5.29.4
Pygments==2.19.1
python-dotenv==1.1.0
requests==2.32.3
rich==14.0.0
setuptools==80.3.0
six==1.17.0
tensorboard==2.19.0
tensorboard-data-server==0.7.2
tensorflow==2.19.0
termcolor==3.1.0
typing_extensions==4.13.2
urllib3==2.4.0
Werkzeug==3.1.3
wheel==0.45.1
wrapt==1.17.2